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Abstract

Let M be a connected compact quantizable Kähler manifold equipped with a Hamiltonian action of a connected compact Lie
group G. Let M//G = φ−1(0)/G = M0 be the symplectic quotient at value 0 of the moment map φ. The space M0 may in
general not be smooth. It is known that, as vector spaces, there is a natural isomorphism between the quantum Hilbert space over
M0 and the G-invariant subspace of the quantum Hilbert space over M . In this paper, without any regularity assumption on the
quotient M0, we discuss the relation between the inner products of these two quantum Hilbert spaces under the above natural
isomorphism; we establish asymptotic unitarity to leading order in Planck’s constant of a modified map of the above isomorphism
under a “metaplectic correction” of the two quantum Hilbert spaces.
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1. Introduction

Let M be an integral connected compact Kähler manifold with symplectic form ω. Then M is quantizable, i.e.,
there is a Hermitian holomorphic line bundle L over M with a connection whose curvature is −iω. We consider
the kth tensor power L⊗k of L . The Hermitian structure on L induces a Hermitian structure on L⊗k . The Hermitian
structure on L⊗k naturally equips the space of holomorphic sections of L⊗k over M with an inner product. For each
k, the quantum Hilbert spaceH(M, L⊗k) is the space of holomorphic sections of L⊗k over M with the inner product.

Now, let G be a connected compact Lie group acting on M holomorphically and in Hamiltonian fashion with
equivariant moment map φ. Let M//G = φ−1(0)/G = M0 be the reduced space at value 0.

Let us first consider the case when the action of G on φ−1(0) is free. Then M0 is a smooth connected compact
Kähler manifold. Assume that the G action lifts to L , preserving the Hermitian metric. The Hermitian line bundle
L⊗k naturally descends to a Hermitian line bundle (L⊗k)0 = (L⊗k

|φ−1(0))/G over M0. The Hermitian structure on
(L⊗k)0 naturally equips the space of holomorphic sections of (L⊗k)0 over M0 with an inner product. For each k,
the quantum Hilbert space H(M0, (L⊗k)0) is the space of holomorphic sections of (L⊗k)0 over M0 with the inner
product. This is the first “reducing” and then “quantizing” Hilbert space. The first “quantizing” and then “reducing”
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quantum Hilbert space is the G-invariant subspace H(M, L⊗k)G of H(M, L⊗k). By Guillemin and Sternberg [6],
there is a natural invertible linear map Ak between H(M, L⊗k)G and H(M0, (L⊗k)0). Let us call this linear map
the Guillemin–Sternberg map. For quantum mechanics, the inner products of the quantum Hilbert spaces are also
important. A few authors have observed that the Guillemin–Sternberg map is not unitary, and, it does not become
asymptotically unitary as k → ∞. Moreover, they identified the volume of the G-orbits in the zero level set as an
obstruction to asymptotic unitarity. We refer to the work of Flude [5], Paoletti [14], Ma–Zhang [12,13], Charles [3]
and Hall–Kirwin [9]. Flude was the first who gave a formal computation of the leading-order term of the asymptotic
density function (the function which relates the norm of an invariant holomorphic section upstairs and the norm of
the descended section downstairs) and who obtained the non-unitarity result. Paoletti proved this result in his study
of the asymptotic expansion of the Szegö kernels upstairs and downstairs (using microlocal analysis [1,2]). Ma and
Zhang obtained this result (Theorem 0.10 for E = C in [13]) on their way of studying the asymptotic expansion of
the G-invariant Bergman kernel of the spinc Dirac operator associated with vector bundles on a symplectic manifold.
Charles obtained this result in his study of (invariant) Toeplitz operators on M and on the symplectic quotient M0
(for torus actions) by looking at the relations he obtained of the (principal) symbols of the Toeplitz operators on M
and of the Toeplitz operators on M0. In the recent study of the inner products of quantum Hilbert spaces by Hall and
Kirwin [9], they proved again the non-unitarity result by writing down an exact expression for the norm of an invariant
holomorphic section upstairs as an integral over M0 and by estimating the leading term of the asymptotic behavior of
the density function. Moreover, for this “free action” case, they obtained asymptotic unitarity results for a modified
quantization procedure. More precisely, they took the tensor products of the line bundles L⊗k’s with the square root of
the canonical bundle of M (assuming it exists), called the metaplectic correction, and they showed that a new defined
Guillemin–Sternberg type map Bk between the new quantum Hilbert spaces is invertible for all sufficiently large k,
and that this map is asymptotically unitary to leading order as k → ∞.

In general, the action of G on φ−1(0) may not be free. Consequently, the quotient M0 may not be smooth. By [15]
and by [16], M0 is in general a stratified Kähler space, with the stratification being given by orbit types of the action.
When there is only one orbit type, M0 is still a smooth Kähler manifold. In this general case when the action of G
on φ−1(0) may not be free, the Hermitian line bundle L⊗k descends to a Hermitian V-line bundle (L⊗k)0 over M0.
Let H(M0, (L⊗k)0) still be the space of holomorphic sections of the V-line bundle (L⊗k)0 over M0 with the induced
inner product. By Sjamaar (see Theorem 6), there is a natural linear isomorphism A′

k between H(M, L⊗k)G and
H(M0, (L⊗k)0).

When the action of G on φ−1(0) is not free, the volume of the G-orbits in φ−1(0) is of course less “uniform”. One
guesses by the above authors’ results that A′

k would not be unitary or asymptotically unitary after suitable quantum
norms are defined. In this paper, we drop the assumption that the action of G on φ−1(0) is free. We give a formula for
the relation of the quantum norm of an invariant holomorphic section upstairs and the quantum norm of the descended
section downstairs under the map A′

k , and we give an asymptotic formula of this to leading order as k → ∞. We see
that A′

k is not unitary and it is not asymptotically unitary. We still consider the “metaplectic correction”. We give a
description of how the square root of the canonical bundle of M descends to M0, we show the existence of a family
of modified isomorphisms B ′

k for sufficiently large k between the new quantum Hilbert spaces, and we establish
asymptotic unitarity to leading order term for the maps B ′

k .

There are two main problems that need to be addressed in this new study. One is that we find a suitable way
to descend the half form bundle of M to the stratified quotient M0. Another problem has to do with a large
piece of the manifold M , the semistable set Mss , which is open dense and connected in M . By Theorem 6,
H(M0, (L⊗k)0) ' H(Mss, L⊗k)G . The holomorphic action of G can be analytically extended to a GC-action, where
GC is the complexification of G. If G acts freely on φ−1(0), Mss consists of free G-orbits and it consists of complex
GC-orbits, each of which intersects φ−1(0) at one G-orbit. In the general case, Mss may contain complex GC-orbits
which do not intersect φ−1(0) but contain those GC-orbits which intersect φ−1(0) in their closures. We will analyze
the structure of these complex orbits and study their contribution to the quantum norms.

Our main results are Theorems 7, 9, 11 and 12 (and the corollaries of Theorems 11 and 12, Corollaries 2 and 3),
and Theorem 14.

We will use three different notations interchangeably for the symplectic quotient at 0, M0, M//G, and Mss//GC,
depending on the context.
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2. Reduction of Kähler manifolds

In this section, we will recall some main results obtained by Sjamaar in [16] on general Kähler quotients. This
will help us to understand our space M0 as well as its relation with M . One may see the difference between the case
when the action of G on φ−1(0) is free and the case when this assumption is removed. This section also serves as a
preparation for the tools needed in the subsequent sections.

To understand stratified Kähler spaces and their quantizations, we also refer to the work of Huebschmann, [7,8].

Let (M, ω, J, B = ω(·, J ·)) be a connected compact Kähler manifold with symplectic form ω, compatible complex
structure J and Riemannian metric B. Let G be a connected compact Lie group acting holomorphically on M . Assume
that the G action is Hamiltonian with an equivariant moment map φ. Assume a is a value of φ. Then the quotient
Ma = φ−1(G · a)/G is called the symplectic quotient or the reduced space at the coadjoint orbit G · a. Let us restrict
attention to the value a = 0. By [15], the quotient M0 is a connected compact stratified symplectic space with a
connected open dense stratum. If M0 has only one stratum, then it is a smooth symplectic manifold. We will see that
M0 also admits an analytic structure such that M0 is a stratified Kähler space.

Since G acts holomorphically, the action can be analytically continued to a holomorphic action of the
“complexified” group GC on M . The Lie algebra gC of GC is the complexification of g. The Cartan decomposition
gives a diffeomorphism GC w exp(ig)G. For ξ ∈ g, let X ξ be the infinitesimal vector field on M generated by ξ .
Then X iξ

= J X ξ is the infinitesimal vector field generated by iξ .
Define a point m in M to be (analytically) semistable if the closure of the GC-orbit through m intersects the zero

level set φ−1(0). Let Mss be the set of semistable points in M . The point m is called (analytically) stable if the
closure of the GC-orbit through m intersects the zero level set φ−1(0) at a point where dφ is surjective. Let Ms be
the set of stable points in M . When the action of G on φ−1(0) is free or locally free, dφ is surjective at any point of
φ−1(0). In this case, Mss coincides with Ms .

Assuming there is a G-invariant inner product on g, by Lemma 6.6 in [10], the gradient vector field of ‖φ‖
2 is

given by

grad(‖φ‖
2)(m) = 2J Xφ(m)(m),

where we have identified φ(m) ∈ g∗ with a vector in g using the inner product, and where Xφ(m)(m) is the vector field
on M induced by φ(m), evaluated at the point m. So grad(‖φ‖

2)(m) is tangent to the GC-orbits. Let Ft be the flow
of −grad(‖φ‖

2). Kirwan has proved that Mss is the set of points m ∈ M such that the path Ft (m) has a limit point in
φ−1(0) ([10]). By [11] or by [17], the limit map F∞(m) gives an equivariant deformation retraction from Mss onto
φ−1(0).

2.1. The holomorphic slice theorem

In order to describe the complex analytic structure on M0, let us first recall the holomorphic slice theorem due to R.
Sjamaar. The results on the orbit structure of Mss and on the stratified Kähler structure of M0 are due to this theorem.

Theorem 1 (Holomorphic Slice Theorem [16]). Let M be a Kähler manifold and let GC act holomorphically on M.
Assume that the action of the compact real form G is Hamiltonian. Let m be any point in M such that the G-orbit
through m is isotropic. Then there exists a holomorphic slice at m for the GC-action.

If X is a complex space and GC a reductive complex Lie group acting holomorphically on X , we have the following
definition of a holomorphic slice.

Definition 1. A holomorphic slice at x for the GC action is a locally closed analytic subspace D of X with the
following properties:

1. x ∈ D;
2. GCD of D is open in X ;
3. D is invariant under the action of the stabilizer (GC)x ;
4. the natural GC-equivariant map from the associated bundle GC×(GC)x D into X , which sends an equivalence class

[g, y] to the point gy, is an analytic isomorphism onto GCD.
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2.2. Kähler reduction

For the orbit structure of Mss , one may see Proposition 2.4 in [16]. We list a few of them which are more relevant
to us.

Proposition 1. In the following, “closed” means “closed in Mss” and “closure” means “closure in Mss”.

1. The semistable set Mss is the smallest GC-invariant open subset of M containing φ−1(0), and its complement in
M is a complex-analytic subset;

2. A GC-orbit in Mss is closed if and only if it intersects φ−1(0);
3. The closure of every GC-orbit in Mss contains exactly one closed GC-orbit.

We call two semistable points x and y related if the closures in Mss of the orbits GCx and GCy intersect. This
relation is an equivalence relation. Let Mss//GC be the quotient space and let πC : Mss

→ Mss//GC be the quotient
map.

Theorem 2 ([16]). The inclusion φ−1(0) ⊂ Mss induces a homeomorphism M0 = φ−1(0)/G → Mss//GC.

We say that a subset A of Mss is saturated with respect to πC if π−1
C πC(A) = A.

Proposition 2 ([16]). At every point of φ−1(0), there exists a holomorphic slice D such that the set GCD
is saturated with respect to the quotient mapping πC.

We identify the spaces Mss//GC and M0. We furnish M0 with a complex-analytic structure such that the quotient
map πC is holomorphic. We define a function f defined on an open subset O of M0 to be holomorphic if the pullback
of f to π−1

C (O) is holomorphic. Let OM0 be the sheaf of holomorphic functions on M0.

Theorem 3 ([16]). The ringed space (M0,OM0) is an analytic space.

The following theorem describes the property of the stable set Ms
⊂ Mss . If 0 is a regular value of φ, then

Ms
= Mss . In general, if Ms

6= ∅, then Ms is open and dense in Mss .

Theorem 4 ([16]). If x ∈ M is stable, then the orbit GCx is closed in Mss . Let Z be the set of points m ∈ φ−1(0)

with the property that dφm is surjective. Then the stable set Ms is equal to F−1
∞ (Z). Every fiber of πC|Ms consists of

a single orbit.

By this theorem, we see that if a G-orbit O = G · x in φ−1(0) has the dimension of G, then only one complex orbit
GC · x = GC · O flows to O under the gradient flow of −‖φ‖

2.

The stratification of M0 as a stratified symplectic space is given by orbit types. Let p ∈ M0, and let x ∈ π−1(p),
where π : φ−1(0) → M0 is the quotient map. Let (H) be a conjugacy class of closed subgroups of G. Then p is said
to be of orbit type (H) if the stabilizer of x is conjugate to H . By [15], the set of all points of orbit type (H) in M0 is
a symplectic manifold.

We can similarly define GC-orbit types. We can show that if x ∈ φ−1(0), then the complex stabilizer (GC)x is
equal to the complexification (Gx )C of the compact stabilizer Gx (see Proposition 1.6 in [16]). By Proposition 1, the
fiber π−1

C (p) contains a unique closed GC-orbit GCx . Let us say p is of GC-orbit type (HC) if the stabilizer (GC)x
is conjugate to HC in GC.

Theorem 5 ([16]). The stratification of M0 by G-orbit types is identical to the stratification by GC-orbit types. Each
stratum S is a complex manifold and its closure is a complex-analytic subvariety of M0. The reduced symplectic form
on S is a Kähler form.

3. Quantization of Kähler manifolds

Let M a connected compact Kähler manifold as in the last section. Assume that the Kähler form ω is integral,
i.e., the cohomology class [ω/2π ] is an integral cohomology class. Then M is quantizable, i.e., there is a Hermitian
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line bundle L with compatible connection O such that its curvature is −iω. The k-th tensor power L⊗k of L is a
Hermitian line bundle over M with induced Hermitian structure from L . For each k, L⊗k may be given the structure
of a holomorphic line bundle. For each fixed k, the quantum Hilbert space is the space of holomorphic sections of
L⊗k over M , denoted H(M, L⊗k). Let εω =

ωn

n!
be the Liouville volume form on M . Then the inner product on

H(M, L⊗k) is usually defined to be

〈s1, s2〉 = (k/2π)n/2
∫

M
(s1, s2)εω,

where (s1, s2) is the pointwise Hermitian structure on L⊗k .
In this paper, we will study quantizable Kähler manifolds with a holomorphic Hamiltonian Lie group action. The

symplectic quotient at value 0 may not be smooth. To adapt to this situation, we will give two definitions of the inner
product on H(M, L⊗k), respectively in Definitions 4 and 5 of Section 13.

4. Quantum reduction

Let M be a connected compact quantizable Kähler manifold. Let G be a connected compact Lie group acting on
M holomorphically and in a Hamiltonian fashion with moment map φ. The G action lifts to a holomorphic action on
the line bundle L preserving the Hermitian structure. Both the G action on M and on L can be analytically continued
to holomorphic GC actions. The G action on L induces G actions on H(M, L⊗k). Infinitesimally, the action is given
by

Qξ s = O(k)

X ξ s − ikφξ s, for ξ ∈ g,

where O(k) is the induced connection on L⊗k , and φξ is the “ξ -moment map component”, i.e., φξ = 〈φ, ξ〉. The
reduction at quantum level amounts to taking G-invariant holomorphic sections, i.e., taking H(M, L⊗k)G .

5. Quantization after reduction

Let M be a connected compact quantizable Kähler manifold equipped with a holomorphic Hamiltonian action of
a connected compact Lie group G. Let φ be the moment map. Let L0 = L|φ−1(0)/G. Then L0 is a V -line bundle

over M0, i.e., each point in M0 has an open neighborhood O which is the quotient of a space Õ by a finite group Γ
such that L0|O is the quotient by Γ of a Γ -equivariant line bundle over Õ . As an analytic space, L0 can be identified
with the quotient L|Mss //GC. A holomorphic section of L defined over a GC-invariant open set is G-invariant if and
only if it is GC-invariant. Let L be the sheaf of holomorphic sections of L and define a sheaf L′ on M0, the sheaf of
invariant sections, by letting L′(O) = L(π−1

C (O))GC for each open set O of M0. Then we have

Proposition 3 ([16]). The sheaf L′ is (the sheaf of sections of) the holomorphic V -line bundle L0 over M0 =

Mss//GC.

We take the space of holomorphic sections H(M0, L0) of the V -line bundle L0 as the quantization of the reduced
space M0.

If we replace L by L⊗k , we have the quantum spaces H(M0, (L⊗k)0).
Since the action of G preserves the Hermitian structure on L⊗k , the Hermitian structure on L⊗k descends to a

Hermitian structure on (L⊗k)0. Let s ∈ H(M, L⊗k)G . Then by restricting s to φ−1(0) and by letting it descend to M0,
we get an element of H(M0, (L⊗k)0). Let us call this linear map A′

k . So, if x ∈ φ−1(0), then we have

|s|2(x) = |A′

ks|2([x]).

We still need to define an inner product on H(M0, (L⊗k)0). Denote

Z(H) = {m ∈ φ−1(0) : the stabilizer group of m is conjugate to H ⊂ G}, (1)

and

S(H) = Z(H)/G. (2)
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As remarked by Sjamaar (see Remark 3.9 in [15]), each S(H) has finite symplectic volume. For a fixed stratum S of
M0, let dS be the complex dimension of S, and let εω̂S be the volume form on S, where ω̂S is the reduced symplectic
form on S.

Let s′

1, s′

2 ∈ H(M0, (L⊗k)0), and, let (s′

1, s′

2) be the pointwise Hermitian inner product on (L⊗k)0 inherited from
the one on L⊗k . Since there is an open dense connected stratum, say SO , in M0, which has full measure, we give the
first definition of an inner product on H(M0, (L⊗k)0):

〈s′

1, s′

2〉(1) = (k/2π)dSO /2
∫
SO

(s′

1, s′

2)εω̂SO . (3)

The following second definition of an inner product on H(M0, (L⊗k)0) takes into account all the strata of M0:

〈s′

1, s′

2〉(2) =

∑
S(H)

(k/2π)
dS(H)

/2
∫
S(H)

(s′

1, s′

2)εω̂S(H)
. (4)

If S is a single point, then the above integral of (s′

1, s′

2) over S is just the value of (s′

1, s′

2) over this point.

6. The linear space isomorphism

In the last section, we defined a linear map A′

k from H(M, L⊗k)G to H(M0, (L⊗k)0). We have

Theorem 6 ([16]). Under our hypotheses, the quotient map πC : Mss
→ M0 and the inclusion Mss

⊂ M induce
isomorphisms H(M0, (L⊗k)0) ' H(Mss, L⊗k)G

' H(M, L⊗k)G .

By Proposition 3, we have the isomorphism H(M0, (L⊗k)0) ' H(Mss, L⊗k)G . The isomorphism H(Mss, L⊗k)G

' H(M, L⊗k)G is based on the observation that the norm of an invariant holomorphic section s of L⊗k is increasing
along the trajectories of −grad(‖φ‖

2). It follows that if s is defined on Mss , then 〈s, s〉 is bounded on M . By Riemann’s
Extension Theorem, s extends to a G-invariant holomorphic section on M . See [16] for details.

From this theorem, we can deduce that a point x ∈ M is semistable if there exists an invariant global holomorphic
section s ∈ H(M, L⊗l)G for some l such that s(x) 6= 0 (see [16]). So the set of unsemistable points is contained in
the 0 set of s; therefore it has complex codimension at least one.

7. Half form bundles on M

Let K =
∧n

(T 1,0 M)∗ be the canonical bundle of M . A smooth section of K is called an (n, 0)-form. We know
that the first Chern class of K is −c1(M). Assume c1(M)/2 is integral. Then the square root

√
K of the bundle K

exists. We fix a choice of
√

K . The group G acts on sections of K . Infinitesimally, a Lie algebra element ξ ∈ g
acts on (n, 0)-forms by taking the Lie derivative L X ξ of each form. This induces an action of g on half forms by
2(L X ξ µ)µ = L X ξ (µ2), where µ ∈

√
K . Since G acts holomorphically on M , we can check that g preserves the

space of holomorphic sections of K and of
√

K .
Let us define a Hermitian structure on Γ (M,

√
K ), where Γ (M,

√
K ) is the space of smooth sections of

√
K . Let

µ, ν ∈ Γ (M,
√

K ) be half forms, then µ2
∧ ν̄2

∈ Γ (
∧2n T ∗(M)). The volume form εω is a global trivializing section

of
∧2n T ∗(M). So there is a function, denoted (µ, ν), such that

µ2
∧ ν̄2

= (µ, ν)2εω. (5)

The function (µ, ν) is defined to be the pointwise inner product of µ and ν.
We use this to define a Hermitian form on Γ (M, L⊗k

⊗
√

K ). Let t1, t2 ∈ Γ (M, L⊗k
⊗

√
K ) which are locally

represented by t j (x) = s j (x)µ j (x), and we define

(t1, t2)(x) = (s1(x), s2(x))(µ1, µ2)(x). (6)
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8. The “push down” of the half form bundle
√

K to the reduced space M0

8.1. When the G action on φ−1(0) is free

Before we come to the general case, let us recall first the procedure given by Hall and Kirwin of pushing down a

half form bundle
√

K of M to a half form bundle
√

K̂ on M//G in the case when the action of G on φ−1(0) is free.
Let α be a GC-invariant (n, 0)-form on M . Hall and Kirwin obtained an (n − d, 0)-form (d is the dimension of

G) β̂ on M//G in the following way. Choose a G-invariant inner product on g normalized so that the volume of G
with respect to the associated Haar measure is 1. Fix an orthonormal basis ξ1, ξ2, . . . , ξd of the Lie algebra g. Let
X ξ1 , X ξ2 , . . . , X ξd be the vector fields they generate on M . For any x ∈ Ms , define

β = i

(∧
j

X ξ j

)
α.

One can show that β is basic with respect to the projection map πC. So β = π∗

C(β̂), where β̂ is an (n − d, 0)-form
on M//G. Let B be the map

B(α) = β̂.

Conversely, one can construct the inverse map of this push down map. Given an (n − d, 0)-form β̂ on M//G. The
pull back β = π∗

C(β̂) is a GC-invariant (n − d, 0)-form on Ms . One can construct a GC-invariant (n, 0)-form α on
Ms from β. Given a local frame X ξ1 , X ξ2 , . . . , X ξd , Y1, . . . , Yn−d for Tx Ms , set

α(X ξ1 , X ξ2 , . . . , X ξd , Y1, . . . , Yn−d) = π∗

Cβ̂(Y1, . . . , Yn−d),

and define α on any other frame by GL(n, C)-equivariance and the requirement that α be an (n, 0)-form. Every
other frame is equivalent to a linear combination of frames which are GL(n, C)-equivalent to one of the form
W1, W2, . . . , Wd , Y1, . . . , Yn−d where W j = X ξ j or J X ξ j .

Assume that the g action on
√

K exponentiates to a G action and it is compatible with the G action on K . It

can be shown that the G action on
√

K can be analytically continued to a GC action. Define a line bundle
√

K̂
over M//G whose fiber is the equivalence class of

√
K under the GC action. For a GC-invariant smooth section

µ ∈ Γ (M,
√

K )GC , we define the map

B : Γ (M,
√

K )GC → Γ (M//G,

√
K̂ )

by (Bµ)2
= B(µ2).

Since for an (n, 0)-form α, contracting with
∧

j X ξ j is the same as contracting with
∧

j π+ X ξ j , where π+ X ξ j =

1
2 (X ξ j − i J X ξ j ), and the vector fields π+ X ξ are holomorphic, α is locally holomorphic if and only if B(α) is locally
holomorphic; and, µ is locally holomorphic if and only if B(µ) is locally holomorphic.

8.2. When the G action on φ−1(0) is not necessarily free

Now we come to the general case.

Lemma 1. Let α ∈ Γ (M, K )GC . Then, α descends to a smooth (dS , 0)-form β̂|S on each smooth stratum S of M0 of
complex dimension dS . If α is holomorphic, then each β̂|S is holomorphic.

Proof. Let Z(H) and S(H) be as in (1) and (2). Take the complex submanifold GC · Z(H). Let

α| = α|GC·Z(H)
.

Then α| is a GC-invariant (m, 0)-form on GC · Z(H), assuming m is the complex dimension of GC · Z(H).
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Case 1. Assume H = G. Then GC · ZG = ZG = ZG/G = SG . We define β̂|SG = α|ZG .

Case 2. Assume H 6= G. Assume we have chosen a normalized G-invariant inner product on g. Let ξ1, . . . , ξh be an
orthonormal basis of h = Lie(H), expand it to an orthonormal basis of g = Lie(G) by joining ξh+1, . . . , ξd . At each
point x of Z(H) with stabilizer group H , we define

β| = i

( ∧
j=h+1,...,d

X ξ j

)
α|.

We contract the form α| similarly at the points of Z(H) with stabilizers conjugate to H . So, along Z(H), we have a new
form β|. Let

β||
= β||Z(H)

.

This restriction “cuts off” the J X Ad(G)·ξ j
, j = h + 1, . . . , d directions which are normal to Z(H) in GC · Z(H). Now,

β||
is a smooth G-invariant (m − dG/H )-form defined on Z(H). By the above contraction and by G-invariance of the

form α, clearly, β||
= π∗(β̂|), where β̂| is a (m − dG/H , 0)-form on S(H), and π : Z(H) → S(H) is the quotient map.

By the above construction, if α is holomorphic, then β̂|S is holomorphic (see the reason we mentioned in
Section 8.1). �

Next, we will use the holomorphic slice theorem to see how the forms β̂|S ’s are related.

Lemma 2. The forms β̂|S ’s in Lemma 1 satisfy: if S ⊂ S̄ ′, then β̂|S is obtained from β̂|S ′ by degenerating some
directions.

Proof. Let x0 ∈ Z(H) be a point with stabilizer group H . Take a saturated open neighborhood U = GCD =

GC×HC D of x0 (see Proposition 2), where HC = (H)C is the complex stabilizer group of x0, which is the
complexification of H . Split D = D1 × D2, where D1 is the fixed complex subspace of the H action, and therefore
the HC action. So U = GC×HC(D1 × D2). The set

U//GC = (D1 × D2)//HC = D1 × D2//HC

is a neighborhood of [x0] in M0.
The set U is G-equivariantly diffeomorphic to G ×H (

√
−1m × D1 × D2), where m is the orthogonal complement

of h in g. We pull back (or restrict) the symplectic form ω on M to U . The group HC acts on D2 holomorphically.
Assume φ| is the moment map for the H -action on D2 with respect to the restricted Kähler form. Then

U ∩ φ−1(0) = G ×H (D1 × φ−1
|

(0)).

Denote

Z ′

(H ′) = {m ∈ φ−1
|

(0) ⊂ D2 : the compact stabilizer group of m is conjugate to H ′
⊂ H},

and recall (1) for Z(H). We have

U ∩ Z(H ′) = G ×H (D1 × Z ′

(H ′)), in particular, U ∩ Z(H) = G ×H (D1 × 0),

where 0 is in the closure of Z ′

(H ′)
. Also

GC · (U ∩ Z(H ′)) = GC×HC(D1 × HCZ ′

(H ′)), and, GC · (U ∩ Z(H)) = GC×HC(D1 × 0).

The quotients are

(U ∩ Z(H ′))/G = D1 × Z ′

(H ′)/H, which is the same as

GC · (U ∩ Z(H ′))//GC = D1 × (HCZ ′

(H ′))//HC,

and

(U ∩ Z(H))/G = D1 × 0, which is the same as GC · (U ∩ Z(H))//GC.
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Now, restricting to the open set U , resp., U//GC, the relation between Z(H) and Z(H ′), resp., the relation
between S(H) and S(H ′), is clear. In the open set U , doing the specified restricting, contracting, restricting again,
and pushing down of the form α| as in the proof of Lemma 1, we see that if we use local coordinates, and if
β̂|S(H ′)

= g(w1, . . . , wk)dw1 ∧ · · · ∧ dwk , then β̂|S(H)
= g(wi1 , . . . , wi j , 0, . . . , 0)dwi1 ∧ · · · ∧ dwi j , where

{i1, . . . , i j } ⊂ {1, . . . , k}. �

Let us simply use β̂ to denote this family of forms on M0 we have obtained. It has different dimensions on different
dimensional strata.

Let us denote the above push down map by

B′
: B′(α) = β̂.

Remark 1. Let us use local coordinates on U = GC×HC(D1 × D2) based at a point x with stabilizer group H to
see the push down map described in the proof of Lemma 1. Let z0 be the coordinate along the GC-orbit direction,
and let (z1, z2) ∈ D1 × D2 be the coordinate in the transversal direction. Then, for instance, we may write a GC-
invariant (n, 0)-form α = f (z0, z1, z2)dz0 ∧ dz1 ∧ dz2 locally, where f is a GC-invariant function. Restricting α

to GC · (U ∩ Z(H)), we get α| = f (z0, z1, 0)dz0 ∧ dz1. The contraction gives β| = f (z0, z1, 0)dz1 (up to a sign),
and the restriction of β| to U ∩ Z(H) gives β||

= f (x0, z1, 0)dz1. By the G-invariance of α, β||
= π∗(β̂|), where

β̂| = f ([x], z1, 0)dz1 is a local form on D1 which is a neighborhood of [x] in S(H). Notice that, conversely, if we
have such a (dS , 0)-form β̂| on S(H), we can lift it to a (dS + dG/H , 0)-form on GC · Z(H) by using GC-invariance
and by “growing back” the coordinate z0.

Remark 2. If G acts freely on φ−1(0), then φ−1(0) = Z1, where 1 ∈ G is the identity element. By the holomorphic
slice theorem, a saturated neighborhood of each point x ∈ φ−1(0) is biholomorphic to U = GC × D. So
U ∩ φ−1(0) = G × D, and D = (U ∩ φ−1(0))/G = U//GC is biholomorphic to a neighborhood of [x] in M0.
In our point of view, we first restrict a GC-invariant (n, 0)-form α to U ; then we contract the form at the points in
U ∩ φ−1(0) with the generating vector fields of the free G-action; then we restrict the resulting form to U ∩ φ−1(0)

and push it down to D by the quotient map π : U ∩ φ−1(0) → D. One may see this in local coordinates as we
did in the last remark. In the point of view of Hall and Kirwin, they contract the form α at the points in U with the
generating vector fields of the free G-action (G acts freely on U ), and then push down the resulting form to D by the
quotient map πC : U → U//GC = D. We see that the results are the same. Their pulling back of an (n′, 0)-form
(let n′

= dim(D)) on D to a GC-invariant (n, 0)-form to U is just done by using the GC-action and by “adding” the
GC-orbit direction.

We define K̂ to be K//GC = K |φ−1(0)/G, and we define
√

K̂ to be
√

K//GC =
√

K |φ−1(0)/G. Sections of

K̂ over M//G are “stratified forms” β̂ whose restriction to each stratum S of complex dimension dS is a smooth
(dS , 0)-form. If O is a small open set in M//G, a section of K̂ over O looks like f̂|dw1 ∧ dw2 ∧ · · · ∧ dwr on the
open dense stratum, and looks like f̂|dwi1 ∧· · ·∧dwi j for some subset {i1, . . . , i j } of {1, . . . , r} on other strata, where

π∗

C( f̂ ) is a GC-invariant function on π∗

C(O).

We defined the map B′
: Γ (M, K )GC → Γ (M//G, K̂ ). Using this map, we define a linear map

B ′
: Γ (M,

√
K )GC → Γ (M//G,

√
K̂ )

such that

(B ′µ)2
= B′(µ2). (7)

Using the map A′

k and the map B ′, for each k, we define a linear map

B ′

k : Γ (M, L⊗k
⊗

√
K )G

→ Γ (M//G, (L⊗k)0 ⊗

√
K̂ ),

unique up to an overall sign, such that

B ′

k(s ⊗ µ) = A′

k(s) ⊗ B ′(µ),
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where s ∈ Γ (L⊗k)G and µ ∈ Γ (
√

K )G .
Next, we give an argument for the facts

H(M//G, K̂ ) = B′(H(Mss, K )GC),

and

H(M//G,

√
K̂ ) = B ′(H(Mss,

√
K )GC).

A holomorphic section of K (or of
√

K ) defined over a GC-invariant open set is G-invariant if and only if it is
GC-invariant. Let K (or

√
K) be the sheaf of holomorphic sections of K (or of

√
K ); and define a sheaf K′ (or

√
K′)

on M0, by letting K′(O) = B′(K(π−1
C (O))GC) (or by letting

√
K′(O) = B ′(

√
K(π−1

C (O))GC)) for each open set O
of M0. Using our results above and combining the argument of the proof of Proposition 3, we have the following:

Proposition 4. The sheaf K′ (or
√
K′) is the sheaf of holomorphic sections of the stratified-line bundle K̂ (or

√
K̂ )

over M0 = Mss//GC.

So we have proved the following

Theorem 7. Let
√

K̂ =
√

K//GC. There exists a linear map B ′
: Γ (M,

√
K )GC → Γ (M//G,

√
K̂ ), unique up

to an overall sign, such that for each µ ∈ Γ (M,
√

K )GC , B ′(µ) is a “stratified form” on M//G such that for
each stratum S of M//G with complex dimension dS , (B ′(µ))2

|S is a (dS , 0)- form on S, and these forms are
related by suitable degenerating of directions from higher dimensional strata to lower dimensional strata. Moreover,

H(M//G,
√

K̂ ) = B ′(H(Mss,
√

K )GC).

Consequently, for each k, there exists a linear map B ′

k : Γ (M, L⊗k
⊗

√
K )GC → Γ (M//G, (L⊗k)0 ⊗

√
K̂ ),

unique up to an overall sign, such that

B ′

k(s ⊗ µ) = A′

k(s) ⊗ B ′(µ)

for s ∈ Γ (M, L⊗k)GC and µ ∈ Γ (M,
√

K )GC , and such that H(M//G, (L⊗k)0 ⊗

√
K̂ ) = B ′

k(H(Mss, L⊗k
⊗

√
K )GC).

We end this section by giving the definition of a pointwise Hermitian structure on Γ (M//G,
√

K̂ ). Let µ′, ν′
∈

Γ (M//G,
√

K̂ ). We define a Hermitian structure on Γ (M//G,
√

K̂ ) stratum-wise as

(µ′)2
∧ (ν̄′)2

|S = (µ′, ν′)2
|S εω̂S , (8)

where εω̂S is the volume form on the stratum S of M//G.

9. Modified linear space isomorphism

The following theorem gives the growth of the pointwise norm square of a G-invariant holomorphic section and
a modified G-invariant holomorphic section along the gradient curves of the moment map components. We need this
theorem to prove Theorem 9, and we will need this theorem in the subsequent sections.

Theorem 8. Let s ∈ H(M, L⊗k)G and let r ∈ H(M, L⊗k
⊗

√
K )G . Let y0 ∈ M, and let H be its stabilizer group.

Let h = Lie(H). Let m be the orthogonal complement of h in g = Lie(G) (assuming we have chosen a G-invariant
metric on g). Then for 0 6= ξ ∈ m, we have

(a) |s|2(eiξ
· y0) = |s|2(y0) exp

{
−
∫ 1

0 2kφξ (eitξ
· y0)dt

}
,

(b) |r |
2(eiξ

· y0) = |r |
2(y0) exp

{
−
∫ 1

0 (2kφξ (eitξ
· y0) +

LJ Xξ εω

2εω
(eitξ

· y0))dt
}

.

If we let f (ξ, y0) := 2
∫ 1

0 φξ (eitξ
· y0)dt , then as a function of ξ ∈ m, f (ξ, y0) achieves its unique minimum at

ξ = 0. The Hessian of f (ξ, y0) at ξ = 0 is given by
Dξ1 Dξ2 f (ξ, y0)|ξ=0 = 2By0(J X ξ1 , J X ξ2), ξ1, ξ2 ∈ m.



730 H. Li / Journal of Geometry and Physics 58 (2008) 720–742

Proof. See the proof of Theorem 4.1 in [9]. Modify the proof by noticing the following: for y0 ∈ M , if H is the
stabilizer group of y0, and if 0 6= ξ ∈ h = Lie(H), then X ξ (y0) = 0, so J X ξ (y0) = 0 as well; therefore eiξ

· y0 = y0.
�

Using (b) of the above theorem, we obtain the following modified linear space isomorphism:

Theorem 9. For k sufficiently large, the map

B ′

k : H(M, L⊗k
⊗

√
K )G

→ H(M//G, (L⊗k)0 ⊗

√
K̂ )

is bijective.

Proof. We use a similar argument as used by Guillemin and Sternberg in [6], by Sjamaar in [16], and by Hall and
Kirwin in [9] (the proof of Theorem 3.2 in [9]).

By Theorems 6 and 7, elements in H(M//G, (L⊗k)0 ⊗

√
K̂ ) lift to elements in H(Mss, L⊗k

⊗
√

K )G .
The map is injective because the two holomorphic sections which agree on the semistable set, which is open and

dense in M , must be equal.

Let r̂ ∈ H(M//G, (L⊗k)0 ⊗

√
K̂ ), and let r ∈ H(Mss, L⊗k

⊗
√

K )G be its lift. We only need to show that |r |
2

remains bounded as we approach the unsemistable set (which is of complex codimension at least one); the Riemann
Extension Theorem will imply that r extends holomorphically to all of M .

By Theorem 8(b), for y0 ∈ Mss with stabilizer group H , and for ξ ∈ m, we have

d
dt

|r |
2(eitξ

· y0) = |r |
2(eitξ

· y0)(−2kφξ (eitξ
· y0) −

LJ X ξ εω

2εω

(eitξ
· y0)).

Notice that, for ξ ∈ h = Lie(H), |r |
2(eitξ

· y0) = |r |
2(y0), and so d

dt |r |
2(eitξ

· y0) = 0.

By the compactness of M and by the compactness of the set {ξ ∈ g : |ξ | = 1},
L J Xξ εω

2εω
is bounded uniformly for all

ξ ∈ g with |ξ | = 1 and at all points in M .
By the monotonicity of φξ (eitξ

· y0) in t for ξ ∈ m, and by the above fact about ξ ∈ h, we see that for all sufficiently
large k, d

dt |r |
2(eitξ

· y0) ≤ 0 for all y0 ∈ Mss , all ξ ∈ g with |ξ | = 1, and all t ≥ 1. It follows that the r obtained
extends holomorphically to all of M . �

10. The pointwise norms of the modified sections

Theorem 10. Suppose r ∈ H(M, L⊗k
⊗

√
K )G . Let x0 ∈ φ−1(0) be a point with stabilizer group H. So

[x0] ∈ S(H) = Z(H)/G. Then, if H = G,

π∗(|B ′

kr |
2([x0])) = |r |

2(x0);

otherwise

π∗(|B ′

kr |
2([x0])) = 2−dG/H /2vol(G · x0)|r |

2(x0),

where dG/H is the dimension of G/H.

By modifying the proofs of Lemmas 3.4 and 3.5 in [9], we can prove the following two lemmas.

Lemma 3. Let x ∈ M be a point with isotropy group H. Let G · x be the orbit through x. Assume that we have
chosen a normalized G-invariant inner product on g. Let ξ1, . . . , ξh be an orthonormal basis of h = Lie(H).
If h 6= g, we expand ξ1, . . . , ξh to an orthonormal basis of g by joining ξh+1, . . . , ξd . Then, the function√

det j,k=h+1,...,d(B(X Ad(g)ξ j , X Ad(g)ξk ))g·x is a constant along the G orbit G · x, and

vol(G · x) =

√
det j,k=h+1,...,d(B(X ξ j , X ξk ))x .
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Lemma 4. Let x0 ∈ φ−1(0). Assume x0 has isotropy group H 6= G. Choose a basis as in the Lemma above. Let
Z j

= π+ X ξ j =
1
2 (X ξ j − i J X ξ j ), for j = h + 1, . . . , d. Let S(H) = Z(H)/G, and let dS(H)

= dimC(S(H)). Then

dimC(GC · Z(H)) = dS(H)
+ dG/H . Let ω| = ω|GC·Z(H)

, and let (εω|
)| =

ω
(dS(H)

+dG/H )

|

(dS(H)
+dG/H )!

. Then

i

(∧
j

Z j

)
◦ i

(∧
k

Z̄ k

)
(εω|

)|(x0)

∣∣∣∣∣
Z(H)

= 2−dG/H vol(G · x0)
2 ω

dS(H)

dS(H)
!
(x0)

∣∣∣∣∣
Z(H)

.

The proof of Lemma 4 uses the result of Lemma 3. Now, we use Lemma 4 to prove Theorem 10.

Proof. Near x0, we can write r = sµ, where s is a local G-invariant holomorphic section of L⊗k and µ is a local
G-invariant holomorphic section of

√
K . Let α = µ2, and let α| = α|GC·Z(H)

. Then, by (8) and by (7), we have

(∗) π∗((B ′µ, B ′µ)2εω̂S(H)
([x0])) = π∗(B′(α)([x0]) ∧ B′(ᾱ)([x0])|S(H)

).

Case 1. Assume H = G. Then, by the construction of the map B′ (see the proof of Lemma 1),

(∗) = (α| ∧ ᾱ|)(x0)|ZG

by (5)
= (µ, µ)2(εω|

)|(x0)|ZG = (µ, µ)2 ωdSG

dSG !
(x0)

∣∣∣∣∣
ZG

.

Case 2. Assume H 6= G. Then, by construction of the map B′,

(∗) =

(
i

( ∧
j=h+1,...,d

Z j

)
α|(x0) ∧ i

( ∧
k=h+1,...,d

Z̄ k

)
ᾱ|(x0)

)∣∣∣∣∣
Z(H)

.

Since α is holomorphic, i(π+ X ξ )ᾱ = i(π− X ξ )α = 0. So the above

=

(
i

( ∧
j=h+1,...,d

Z j
∧

∧
k=h+1,...,d

Z̄ k

)
(α| ∧ ᾱ|)(x0)

)∣∣∣∣∣
Z(H)

by (5)
= i

( ∧
j=h+1,...,d

Z j
∧

∧
k=h+1,...,d

Z̄ k

)
((µ, µ)2(εω|

)|)(x0)

∣∣∣∣∣
Z(H)

= (µ, µ)2(x0)2−dG/H vol(G · x0)
2 ω

dS(H)

dS(H)
!
(x0)

∣∣∣∣∣
Z(H)

by Lemma 4.

In the above, we used the fact that, if we do α ∧ ᾱ = (µ, µ)2εω on M , we get a function (µ, µ)2 on M ; the value
(µ, µ)2(x0) is the same as the value (µ, µ)2

|
(x0) of the function (µ, µ)2

|
obtained by doing α| ∧ ᾱ| = (µ, µ)2

|
(εω|

)|
on the Kähler submanifold GC · Z(H).

In both cases, dividing by π∗εω̂S(H)
= ω

dS(H) /(dS(H)
)!|Z(H)

, taking the square root and using the fact that

|A′

ks|2([x0]) = |s|2(x0), we obtain the result. �

11. Norms of sections in the quantum spaces

11.1. The coarea formula

The coarea formula was cited in [9]. For convenience, we also include this formula here (see [4], pg. 159–160).

Lemma 5. Let Q and R be smooth Riemannian manifolds with dim(Q) ≥ dim(R), and let p : Q → R. Then for any
f ∈ L1(Q), one has∫

Q
Jp f dvol(Q) =

∫
R

dvol(R)(y)

∫
p−1(y)

( f |p−1(y))dvol(p−1(y)),

where the Jacobian is Jp :=

√
det(p∗ ◦ pad j

∗ ).
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For instance, consider GC · Z(H) or GC · Si occuring in Lemma 8 or in Lemma 9 of Section 11.2. Let m be the
orthogonal complement of h = Lie(H) or of h′ in g. Denote Z(H) or Si simply as S. Let Λ : m × S → GC · S be the
diffeomorphism Λ(ξ, u) = eiAd(g)ξ

· u, if u has infinitesimal isotropy Lie algebra Ad(g)h or Ad(g)h′. The volume
element of GC · S inherited from M at a point (ξ, g · u), where u has isotropy Lie algebra h or h′, decomposes as

Λ∗(dvol(GC · S))(ξ, g·u) = τ(ξ, u)dvol(m) ∧ dvol(S)g·u (9)

for some G-invariant smooth Jacobian function τ , where dvol(m) is the Lebesgue measure on m.

11.2. Norms of the sections in the quantum spaces

In this section, we compute the norms of the sections in the quantum spaces. The main result of this section is
Theorem 11.

Let Z(H) be as in (1). Then

Mss
=

⋃
(H)

F−1
∞ (Z(H)),

where F∞ is the limit map of the flow Ft of the gradient of −‖φ‖
2. By dividing further into connected components

for each Z(H), we assume that each Z(H) is connected. Since there is an open dense connected stratum Z(H) (for some
H ) in φ−1(0) ([15]), there is an open dense connected set F−1

∞ (Z(H)) in Mss . We will compute the integral of the
pointwise norm square of the sections over each F−1

∞ (Z(H)) with H varyng. This integral will relate to the integral
over S(H) (see (2) for the definition of S(H)) of the pointwise norm square of the descended section. In particular, if
Z(H) or S(H) is a single point, then the integral on it is regarded as the pointwise norm square of the sections over this
point.

Now, let us take a look at F−1
∞ (Z(H)). By 2 and 3 of Proposition 1, GC · Z(H) j F−1

∞ (Z(H)). By the holomorphic
slice theorem or by Theorem 4, we have

Lemma 6. If dφx is surjective for all x ∈ Z(H) (H is necessarily finite), then F−1
∞ (Z(H)) = GC · Z(H).

Now, we assume that F−1
∞ (Z(H)) is strictly larger than GC · Z(H). Then F−1

∞ (Z(H)) contains complex orbits whose
closures contain the complex orbits in GC · Z(H). We decompose the set F−1

∞ (Z(H))− GC · Z(H) into a disjoint union
of connected GC-invariant complex submanifolds, each of which has the same infinitesimal compact orbit type, say
(h′). Let M (H)

(h′)
denote one of these invariant complex submanifolds.

Lemma 7. Assume that F−1
∞ (Z(H)) is strictly larger than GC · Z(H). We decompose F−1

∞ (Z(H)) − GC · Z(H) =⋃
h′ M (H)

(h′)
, where

⋃
h′ M (H)

(h′)
is a disjoint union with each M (H)

(h′)
being a connected GC-invariant complex submanifold

of a certain infinitesimal compact orbit type (h′). Then 0 6∈ φ(M (H)

(h′)
) and dim (h′) < dim(H). Therefore, for any

possible H, if m is the orthogonal complement of h′ in g, then dim (m) > 0.

Proof. By 2 of Proposition 1, the complex orbits in M (H)

(h′)
do not intersect with φ−1(0). So 0 6∈ φ(M (H)

(h′)
).

By Theorem 1, a neighborhood U of x ∈ Z(H) in M is G-equivariantly biholomorphic to GC×HC D. Split
D = D1 × D2, where D1 is the complex subspace fixed by H and HC. Let φ| be the moment map of the H action on
D2 with respect to the restricted Kähler form. Then U ∩φ−1(0) = G ×H (D1 ×φ−1

|
(0)), U ∩ Z(H) = G ×H (D1 ×0),

and U ∩ GC · Z(H) = GC×HC(D1 × 0). By the assumption, D2 6= ∅ and M (H)

(h′)
∩ D2 6= ∅. The set M (H)

(h′)
∩ D2 is

an H -invariant subset of D2 consisting of points with isotropy Lie algebra h′
⊂ h = Lie(H) (A group H ′ such that

Lie(H ′) = h′ is a subgroup of H , since any point in D2 has its isotropy group being a subgroup of H ).
Since φ(M (H)

(h′)
) does not intersect 0, φ|(M (H)

(h′)
∩ D2) does not intersect 0. One only needs to argue when H is not

connected and when dim (H ′) = dim(H), and exclude this possibility by using the fact that a finite group action does
not contribute to the moment map φ|. �

By the definition of the moment map, for x ∈ M with isotropy Lie algebra h′, the image of dφx : Tx M → g∗ is the
annihilator in g∗ of h′. So the image φ(M (H)

(h′)
) intersects with a closed positive Weyl chamber at a certain dimension.
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This image may lie on one or more than one open faces of the moment polytope 4 of φ. These faces form a connected
set since we took M (H)

(h′)
to be connected. For a non-Abelian Lie group action, the moment polytope is defined to be

the intersection of the image of the moment map with a fixed closed positive Weyl chamber. The faces of the moment
polytope are caused by symplectic submanifolds with different isotropy groups. One should distinguish the faces of
the moment polytope with the faces of the Weyl chamber.

Lemma 8. Assume that φ(M (H)

(h′)
) only lies on one open face F0 of 4. Then dim (F0) > 0. Let 0 6= a0 ∈ φ(M (H)

(h′)
) ⊂

F0 be a value. Then, we can write M (H)

(h′)
= GC · S0, where S0 j S(h′) = {x ∈ φ−1(G ·a0) : x has isotropy Lie algebra

type (h′)} and S0 is G-invariant.

Proof. Since F∞(M (H)

(h′)
) ⊂ φ−1(0), there are points in φ(M (H)

(h′)
) arbitrarily near 0. Since φ(M (H)

(h′)
) is connected, dim

(F0) > 0.
Since S0 ⊂ M (H)

(h′)
, and since M (H)

(h′)
is GC-invariant, we have GC · S0 ⊂ M (H)

(h′)
. Conversely, if x ∈ M (H)

(h′)
, then

φ(x) ∈ G · F0. Without loss of generality, we assume the isotropy Lie algebra of x is h′ and φ(x) = b ∈ F0. If
b = a0, then x ∈ S(h′). If b 6= a0, then x can be reached by the flow line of J X ξ from a point in φ−1(a0), where ξ is
a vector in F0 pointing from a0 to b. So x ∈ GC · S(h′). �

Corollary 1. Let a be any point on the face F0, and let S j {x ∈ φ−1(G · a) : x has isotropy Lie algebra type (h′)}.
Then GC · S0 = GC · S = M (H)

(h′)
.

Proof. We have F0 ⊂ m, where m is the orthogonal complement of h′ in g which is identified with the annihilator of
h′ in g∗. The image φ(GC · S0) must cover the face F0. So a ∈ φ(M (H)

(h′)
). �

Lemma 9. Assume φ(M (H)

(h′)
) lies on more than one faces of 4. Let F1, . . . ,Fp be the ones whose closures contain

0. Let 0 6= ai ∈ Fi , i = 1, . . . , p, and let

Si j {x ∈ φ−1(G · ai ) : x has isotropy Lie algebra type(h′)}.

If Fk is in the closure of Fi , then GC · Sk ⊂ GC · Si . Moreover, we can write M (H)

(h′)
= ∪i∈I (GC · Si ), where I is the

subset of {1, . . . , p} such that Fi∈I are the top dimensional faces among the Fi ’s.

Proof. We have Fk ⊂ F̄i ⊂ m, where m is the orthogonal complement of h′ in g which is identified with the
annihilator of h′ in g∗. Since the points in Sk have isotropy Lie algebra (h′), the GC action (or the i(m) action) will
take the points in Sk out and merge them into GC · Si . Or, equivalently, the moment map value increases along the
flow lines of J X ξ , where ξ ∈ m is orthogonal to Fk . This proves GC · Sk ⊂ GC · Si .

So, using Lemma 8, ∪i∈I (GC · Si ) = ∪
p
i=1(GC · Si ) ⊂ M (H)

(h′)
. If φ(M (H)

(h′)
) lies on another face Fp+1 whose closure

does not contain 0, then GC · Sp+1 (where Sp+1 is taken similarly as the Si ’s) should emerge into ∪
p
i=1 GC · Si to

converge to φ−1(0). This proves M (H)

(h′)
= ∪i∈I (GC · Si ). �

By this lemma, if two faces Fi and F j where i, j ∈ I contain a one dimensional less face Fk in their common
closure, then GC · Si ∩ GC · S j = GC · Sk .

Remark 3. In the above lemma, generally we cannot get all GC · Si from GC · Sk by the flow lines of J X ξ , where
ξ ∈ (m). Some orbits in GC · Si may converge to more singular orbits in φ−1(G · Fk).

Since 0 is in the closure of each Fi , dim (Fi ) > 0 for each i = 1, . . . , p.

So we have proved

Lemma 10. We can decompose F−1
∞ (Z(H)) into a (finite) disjoint union F−1

∞ (Z(H)) = GC · Z(H)

⋃
h′ M (H)

(h′)
, where⋃

h′ M (H)

(h′)
= ∅, or, each M (H)

(h′)
can be written as in Lemma 8 or in Lemma 9. In the second case, for any i = 0, 1 . . . , p,

we may choose a′

i 6= 0 on Fi different from ai and choose S′

i j {x ∈ φ−1(G · a′

i ) : x has isotropy Lie algebra type
(h′)} and we have GC · Si = GC · S′

i .
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Definition 2. Let n(H) be the complex dimension of GC · Z(H), and let n(H)

(h′)
be the complex dimension of M (H)

(h′)
. Take

s ∈ H(M, L⊗k)G . Define

I
Z(H)

k = (k/2π)n(H)/2
∫

GC·Z(H)

|s|2dvol(GC · Z(H)),

and,

I I
Z(H)

k =

∑
h′

(k/2π)
n(H)

(h′)
/2
∫

M(H)

(h′)

|s|2dvol(M (H)

(h′)
).

Define∫
F−1

∞ (Z(H))

|s|2dvol(F−1
∞ (Z(H))) = I

Z(H)

k + I I
Z(H)

k .

Lemma 11. Let s ∈ H(M, L⊗k)G . Then

(a) I
Z(H)

k = (k/2π)
dS(H)

/2 ∫
S(H)

|A′

ks|2([x])I
S(H)

k ([x])εω̂S(H)
, where

I
S(H)

k ([x]) = 1, if H = G; and

I
S(H)

k ([x]) = vol(G · x)(k/2π)dG/H /2
∫
m

τ(ξ, x) exp

{
−

∫ 1

0
2kφξ (eitξ

· x)dt

}
dvol(m),

if H 6= G. Here, m denotes the orthogonal complement of h = Lie(H) in g, and x is a point with stabilizer group
H.

(b)

I I
Z(H)

k = 0,

or

I I
Z(H)

k =

∑
h′

(k/2π)
n(H)

(h′)
/2

(∑
i

±

∫
Si

|s|2(g · u)dvol(Si )

∫
m ′

τ(ζ, u) exp

{
−2k

∫ 1

0
φζ (ei tζ

· u)

}
dvol(m′)

)
,

where the second sum is over some subset of indices of i occurring in Lemma 8 or in Lemma 9, m′ is the orthogonal
complement of h′ in g, and the points u ∈ Si are of the isotropy Lie algebra h′.

Proof. We will drop the subscripts and superscripts in I
Z(H)

k and I I
Z(H)

k and simply write I and I I .

(a) If H = G, then GC · ZG = ZG = SG . So

I = (k/2π)n(H)/2
∫

GC·ZG

|s|2dvol(GC · ZG) = (k/2π)n(H)/2
∫

ZG

|s|2(x)dvol(ZG)

= (k/2π)dSG /2
∫
SG

|A′

ks|2([x])εω̂SG
.

If H 6= G, then by the coarea formula, the formula (9), and Theorem 8(a), we have

I = (k/2π)n(H)/2
∫

Z(H)

|s|2(x ′)dvol(Z(H))

∫
m

τ(ξ, g−1x ′) exp

{
−2k

∫ 1

0
φAd(g)ξ (e

it Ad(g)ξ
· x ′)

}
dvol(m),

where x ′ is any point in Z(H) with stabilizer group gHg−1 (for some g).
By the G-invariance of the function τ , and by G-equivariance of the moment map φ, we have∫

m
τ(ξ, g−1x ′) exp

{
−2k

∫ 1

0
φAd(g)ξ (e

it Ad(g)ξ
· x ′)

}
dvol(m)

=

∫
m

τ(ξ, x) exp

{
−2k

∫ 1

0
φξ (eitξ

· x)

}
dvol(m),
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where x = g−1x ′ has stabilizer H .
Using the fact that dvol(Z(H)) = dvol(G · x) ∧ π∗dvol(S(H)), the integral

I = (k/2π)(n(H)−dG/H )/2
∫
S(H)

|A′

ks|2([x])dvol(S(H))vol(G · x)(k/2π)dG/H /2

∫
m

τ(ξ, x) exp

{
−2k

∫
γξ

φξ

}
dvol(m) = (k/2π)

dS(H)
/2
∫
S(H)

|A′

ks|2([x])I
S(H)

k ([x])εω̂S(H)
,

where

I
S(H)

k ([x]) = vol(G · x)(k/2π)dG/H /2
∫
m

τ(ξ, x) exp

{
−2k

∫ 1

0
φξ (eitξ

· x)

}
dvol(m),

with x being taken as a point (on the orbit G · x) with stabilizer group exactly H .

(b) If
⋃

h′ M (H)

(h′)
= ∅, then I I = 0.

Otherwise, let us only consider one summand for the first summation in I I . The others follow similarly. So, we assume

I I = (k/2π)
n(H)

(h′)
/2
∫

M(H)

(h′)

|s|2dvol(M (H)

(h′)
).

By Lemma 8 or Lemma 9, we can compute this integral over one set GC · S0, or we can compute it over a finite union
GC · Si∈I and possibly subtract some integrals over some mutual intersections which have similar forms (if a mutual
intersection has lower dimension, then we do not subtract). So we only need to write one such integral in the stated
form.

Using the coarea formula, the formula (9) and Theorem 8(a) on the space GC · Si , we have∫
GC·Si

|s|2dvol(GC · Si )

=

∫
Si

|s|2(u′)dvol(Si )

∫
m ′

τ(ζ, g−1u′) exp

{
−2k

∫ 1

0
φAd(g)ζ (e

i t Ad(g)ζ
· u′)

}
dvol(m′),

where u′
∈ Si is any point with isotropy Lie algebra Ad(g)h′ (for some g).

For the same reason as in (a), we have∫
m ′

τ(ζ, g−1u′) exp

{
−2k

∫ 1

0
φAd(g)ζ (e

i t Ad(g)ζ
· u′)

}
dvol(m′)

=

∫
m ′

τ(ζ, u) exp

{
−2k

∫ 1

0
φζ (ei tζ

· u)

}
dvol(m′),

where u = g−1u′ has isotropy Lie algebra h′. �

Definition 3. We use the same notations as those in Definition 2. Take r ∈ H(M, L⊗k
⊗

√
K )G . Define

Ĩ
Z(H)

k = (k/2π)n(H)/2
∫

GC·Z(H)

|r |
2dvol(GC · Z(H)),

and

Ĩ I
Z(H)

k =

∑
h′

(k/2π)
n(H)

(h′)
/2
∫

M(H)

(h′)

|r |
2dvol(M (H)

(h′)
).

Define∫
F−1

∞ (Z(H))

|r |
2dvol(F−1

∞ (Z(H))) = Ĩ
Z(H)

k + Ĩ I
Z(H)

k .
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Lemma 12. Let r ∈ H(M, L⊗k
⊗

√
K )G . Then

(a) Ĩ
Z(H)

k = (k/2π)
dS(H)

/2 ∫
S(H)

|B ′

kr |
2([x])J

S(H)

k ([x])εω̂S(H)
, where

J
S(H)

k ([x]) = 1, if H = G; and J
S(H)

k ([x]) = (k/2π)dG/H /22dG/H /2
·∫

m
τ(ξ, x) exp

{
−

∫ 1

0

(
2kφξ (eitξ

· x) +
LJ X ξ εω

2εω

(eitξ
· x)

)}
dvol(m),

if H 6= G. Here, m denotes the orthogonal complement of h = Lie(H) in g, and x is a point with stabilizer group
H.

(b)

Ĩ I
Z(H)

k = 0,

or

Ĩ I
Z(H)

k =

∑
h′

(k/2π)
n(H)

(h′)
/2

(∑
i

±

∫
Si

|r |
2(g · u)dvol(Si )

∫
m ′

τ(ζ, u)

× exp

{
−

∫ 1

0

(
2kφζ (ei tζ

· u) +
LJ X ζ εω

2εω

(ei tζ
· u)

)}
dvol(m′)

)
,

where the second sum is over some subset of indices of i occuring in Lemma 8 or Lemma 9, m′ is the orthogonal
complement of h′ in g, and the points u ∈ Si are of isotropy Lie algebra h′.

Proof. (a) The proof is similar to the proof of (a) of Lemma 11, but we will use Theorem 10. We will drop the

subscript and superscript in Ĩ
Z(H)

k and simply write Ĩ .
If H = G, then GC · ZG = ZG = SG . Then

Ĩ = (k/2π)nG/2
∫

GC·ZG

|r |
2dvol(GC · ZG)

= (k/2π)nG/2
∫

ZG

|r |
2(x)dvol(ZG)

= (k/2π)dSG /2
∫
SG

|B ′

kr |
2([x])εω̂SG

by Theorem 10.
If H 6= G, then by the coarea formula, the formula (9), Theorem 8(b), and by a G-invariance argument as in

the proof of Lemma 11, we have

Ĩ = (k/2π)n(H)/2
∫

Z(H)

|r |
2(g · x)dvol(Z(H))

∫
m

τ(ξ, x) exp

{
−

∫
γξ

(
2kφξ +

LJ X ξ εω

2εω

)}
dvol(m).

By Theorem 10,

Ĩ = (k/2π)
dS(H)

/2
∫
S(H)

|B ′

kr |
2([x])dvol(S(H))2

dG/H /2(k/2π)dG/H /2
∫
m

τ(ξ, x)

× exp

{
−

∫
γξ

(
2kφξ +

LJ X ξ εω

2εω

)}
dvol(m)

= (k/2π)
dS(H)

/2
∫
S(H)

|B ′

kr |
2([x])J

S(H)

k ([x])εω̂S(H)
,

where

J
S(H)

k ([x]) = (k/2π)dG/H /22dG/H /2
∫
m

τ(ξ, x) exp

{
−

∫
γξ

(
2kφξ +

LJ X ξ εω

2εω

)}
dvol(m).
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(b) Similar to the proof of (b) of Lemma 11. We omit it. �

Now, we come to our main result of this section:

Theorem 11. (a) Let s ∈ H(M, L⊗k)G . Then∑
Z(H)

∫
F−1

∞ (Z(H))

|s|2dvol(F−1
∞ (Z(H))) =

∑
S(H)

(k/2π)
dS(H)

/2
∫
S(H)

|A′

ks|2([x])I
S(H)

k ([x])εω̂S(H)
+

∑
Z(H)

I I
Z(H)

k ,

where I
S(H)

k ([x]) is as in Lemma 11(a), and each I I
Z(H)

k is as in Lemma 11(b).

In particular, the above is true for each individual summand with respect to (H).
(b) Let r ∈ H(M, L⊗k

⊗
√

K )G . Then∑
Z(H)

∫
F−1

∞ (Z(H))

|r |
2dvol(F−1

∞ (Z(H))) =

∑
S(H)

(k/2π)
dS(H)

/2
∫
S(H)

|B ′

kr |
2([x])J

S(H)

k ([x])εω̂S(H)
+

∑
Z(H)

Ĩ I
Z(H)

k ,

where J
S(H)

k ([x]) is as in Lemma 12(a), and each Ĩ I
Z(H)

k is as in Lemma 12(b).

In particular, the above is true for each individual summand with respect to (H).

Proof. Lemmas 11 and 12 proved the statements for the individual summands. The statements for the sums follow
from these lemmas by taking the sum of the individual terms. �

The asymptotic properties of I
S(H)

k ([x]), of J
S(H)

k ([x]), of I I
Z(H)

k and of Ĩ I
Z(H)

k will be studied in the next section
(see Theorem 12).

12. Asymptotics

Our main result of this section is

Theorem 12. (a) The densities I
S(H)

k and J
S(H)

k for H 6= G satisfy

lim
k→∞

I
S(H)

k ([x]) = 2−dG/H /2vol(G · x),

and

lim
k→∞

J
S(H)

k ([x]) = 1.

The limits are uniform for [x] ∈ Z(H)/G.

(b) If I I
Z(H)

k 6= 0 and Ĩ I
Z(H)

k 6= 0, then they satisfy

lim
k→∞

I I
Z(H)

k = 0,

and

lim
k→∞

Ĩ I
Z(H)

k = 0.

The proof of this theorem will be given in Section 12.3.

12.1. Growth estimates

In Lemmas 11 and 12, in the expressions of I
S(H)

k , or of J
S(H)

k (for H 6= G), or in the summands of I I
Z(H)

k or

Ĩ I
Z(H)

k , we had the following types of integrals∫
m

τ(ξ, x) exp

{
−2k

∫
γξ

φξ

}
dvol(m)
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and ∫
m

τ(ξ, x) exp

{
−

∫
γξ

(
2kφξ +

LJ X ξ εω

2εω

)}
dvol(m),

where x ∈ S with S = Z(H) or S = Si for some Si as in Lemma 8 or in Lemma 9, ξ ∈ m, and γξ = eitξ
· x , t ∈ [0, 1].

Remark 4. In this and the next subsections, for simplicity, we will only use m to denote the orthogonal complement
of h or of h′ in g, as we did in Formula (9).

Theorem 13. Consider GC · S, where S = Z(H) or S = Si for an Si as in Lemma 8 or in Lemma 9. There exist
constants b, and D > 0 such that for all [x] ∈ S/G (the integral is a function of [x]), and for all R and k sufficiently
large,∫

m−BR(0)

τ(ξ, x) exp

{
−2k

∫
γξ

φξ

}
dvol(m) ≤ be−RDk,

where m is the orthogonal complement of h or of h′ in g, and BR(0) is a ball in m of radius R centered at 0.

Since we can find a uniform bound for −
LJ Xξ εω

2εω
on M, the above inequality is also true for the integral∫

m−BR(0)
τ(ξ, x) exp{−

∫
γξ

(2kφξ +
LJ Xξ εω

2εω
)}dvol(m).

The proof of this theorem relies on the following two lemmas.

Lemma 13. Consider GC · S, where S = Z(H) or S = Si for an Si as in Lemma 8 or in Lemma 9. For any t0 > 0,
there exists C > 0 such that for all t > t0,

exp

{
−

∫
γt ξ̂

2kφt ξ̂

}
≤ e−2ktC

uniformly on S/G, where ξ̂ ∈ m with |ξ̂ | = 1.

Proof. By definition,
∫
γt ξ̂

φt ξ̂ =
∫ 1

0 〈φ(eiτ t ξ̂
· x), t ξ̂〉dτ = t

∫ 1
0 〈φ(eiτ t ξ̂

· x), ξ̂〉dτ . Hence, we need to find a positive

lower bound for the function ft (ξ̂ , x) =
∫ 1

0 φ
ξ̂
(eiτ t ξ̂

· x)dτ when t is sufficiently large. We prove the lemma for
the case S = Z(H). The argument applies to other cases. Since ft is G-invariant, on each G-orbit, we only need
to consider a particular point x which has isotropy Lie algebra exactly h. So we take Sh

⊂ S to be the set of such
points. First, fix ξ̂ ∈ m with |ξ̂ | = 1, and consider the ξ̂ -moment map φ

ξ̂
. Then, φ

ξ̂
(Sh) = constant. For x ∈ Sh,

ft (ξ̂ , x) for any t > 0 is strictly increasing since eiτ t ξ̂
· x is the gradient line of φt ξ̂ and J X t ξ̂ (x) 6= 0. If Sh is

compact, we can find a positive lower bound C
ξ̂

for ft (ξ̂ , x) for all points in Sh and for all t > t0 for any chosen

t0 > 0. If Sh is not compact, we do the following. Consider a nearby regular value a > 0 of φ
ξ̂
. For y ∈ φ−1

ξ̂
(a),

consider the function f ′
t (ξ̂ , y) =

∫ 1−ε

−ε
φ

ξ̂
(eiτ t ξ̂

· y)dτ , where ε is a small number. By choosing a properly, for each

x in Sh, there exists y ∈ φ−1
ξ̂

(a), such that f ′
t (ξ̂ , y) = ft (ξ̂ , x) (since the x’s are not fixed by the circle action

generated by ξ̂ , this can be achieved). We choose the positive minimum of f ′
t on its compact domain φ−1

ξ̂
(a) as C

ξ̂

(the positivity of C
ξ̂

is due to a being a regular value). So, for each ξ̂ ∈ m with |ξ̂ | = 1, there exists C
ξ̂

> 0, such that

ft (ξ̂ , x) =
∫ 1

0 φ
ξ̂
(eiτ t ξ̂

· x)dτ ≥ C
ξ̂

for all [x] ∈ S/G. By the compactness of the set {ξ̂ ∈ m, |ξ̂ | = 1}, and by the

continuous dependence of ft on ξ̂ , we can find a positive constant C such that ft ≥ C uniformly for all [x] ∈ S/G
and for all ξ̂ ∈ m with |ξ̂ | = 1.

For the proof of other S’s, we replace the above Sh by Sh′

∩ φ−1(ai ) (recall that 0 6= ai ∈ Fi ) so that
φ

ξ̂
(Sh′

∩ φ−1(ai )) = constant, noticing the fact that Sh′

∩ φ−1(ai ) has all the representatives of S/G. �
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Lemma 14. Consider GC · S, where S = Z(H) or S = Si for an Si as in Lemma 8 or in Lemma 9. There exist
constants a and b > 0 such that for all t > 0

τ(t ξ̂ , x) ≤ bt−meat

uniformly on S/G, where ξ̂ ∈ m with |ξ̂ | = 1, and m is the dimension of m.

Proof. The manifold GC · S is a complex submanifold of M . Since M can be embedded into projective spaces, GC · S
is a complex submanifold of projective spaces. The proof of Lemma 5.7 in [9] applies. (The proof of Lemma 5.7 in [9]
does not need the domain of x to be compact, but it uses the fact that the domain of ξ̂ is compact.) �

Once we have the above two lemmas, using polar coordinates, we can prove Theorem 13. One may refer to the
proof of Theorem 5.5 in [9].

12.2. Approximation

Lemma 15. The function τ(ξ, x) equals vol(G · x) on S, where S = Z(H) or S = Si for an Si as in Lemma 8 or in
Lemma 9.

Proof. We prove the lemma for the case S = Si for some i . The proof for the other S’s is similar. Consider the complex
submanifold GC · S. We take Sh′

⊂ S, the set of points with isotropy Lie algebra exactly h′. Let S̃ = Sh′

∩ φ−1(ai ).
Then S̃ contains all the representatives of S/G. Since τ(ξ, x) is G-invariant, we only need to consider the value
τ(0, x) with x ∈ S̃. So we only consider Formula (9) on eim

· S̃. Consider the submanifold eim
· S̃. At each point

x ∈ S̃, the B-orthogonal complement of Tx S̃ in Tx (eim
· S̃) is exactly the linear span of the vectors J X ξ with ξ ∈ m:

for any J X ξ with ξ ∈ m and any vector v ∈ Tx S̃, we have B(J X ξ , v)x = ω(v, X ξ )x = v(φξ )x = 0, since φξ takes
constant value on S̃. So B is block diagonalizable at x on the submanifold eim

· S̃, and

dvol(eim
· S̃)x =

√
detB(J X ξi , J X ξ j )x dvol(m) ∧ dvol(S̃)x

with ξi , ξ j ∈ m. By Lemma 3,
√

detB(J X ξi , J X ξ j )x = vol(G · x). �

The result of the above lemma will be used in the proof of the following lemma.

Lemma 16. Consider GC · S, where S = Z(H) or S = Si for an Si as in Lemma 8 or in Lemma 9. Define

Ik,R([x]) = (k/2π)m/2
∫

BR(0)

τ(ξ, x)e−k f (ξ,x)dvol(m),

where f (ξ, x) = 2
∫ 1

0 φξ (eitξ
·x)dt at a point x ∈ S with isotropy Lie algebra h or h′, m is the orthogonal complement

of h or of h′ in g, and m = dim(m).
Then there exists some R > 0 such that

lim
k→∞

|Ik,R([x]) − 2−m/2
| = 0

uniformly on S/G.

Proof. We will prove the lemma for the case S = Z(H). The other cases follow similarly. We refer to the proof of
Lemma 5.10 in [9]. By Theorem 8, the function f (ξ, x) is a G-invariant Morse–Bott function on GC · Z(H) with
0 × Z(H) being a minimum. By the Morse–Bott lemma, for each point x ∈ Z(H), there exists a neighborhood of this
point on which f (ξ, x) can be written as a quardratic function. If Z(H) is compact, we can choose the smallest positive
radius of the (finitely many) neighborhoods as R. If Z(H) is not compact, note that if Z(K ) is in the closure of Z(H),
then (up to conjugacy) the orthogonal complement m′ of Lie(K ) is a linear subspace of the orthogonal complement
m of Lie(H). Because of this property, for the function f (ξ, x) on GC · Z(K ) we may assume that the neighborhoods
of the points x’s ∈ Z(K ) overlap the strata Z(H)’s whose closures contain Z(K ). So, we can use the compactness of
φ−1(0) to have finitely many neighborhoods, and therefore choose the smallest R for all the strata Z(H) ⊂ φ−1(0).
Once R is chosen, on each GC · Z(H), follow the arguments of the proof of Lemma 5.10 in [9]. In the proof of
Lemma 5.10 in [9], there are some estimates on the bounds of the absolute value of some continuous functions of
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x ∈ Z(H) which involve certain integrals of the derivative of τ(ξ, x) in the direction of ξ (the constants Q1 and Q2). If
Z(H) is not compact, the formula on τ in (9) of Section 11.1 should continuously transform from higher dimensional
strata Z(H) of φ−1(0) to lower dimensional ones. This should allow us to extend continuously the above continuous
functions to the closure of Z(H) in φ−1(0) and take the maximum of the absolute values. (The constant Q3 in the
proof of Lemma 5.10 in [9], is 2m/2 in our case.) �

Lemma 17. Consider GC · S, where S = Z(H) or S = Si for an Si as in Lemma 8 or in Lemma 9. Define

Jk,R([x]) = (k/2π)m/22m/2
∫

BR(0)

τ(ξ, x)e−k f (ξ,x) exp

{
−

∫
γξ

LJ X ξ εω

2εω

}
dvol(m).

Then, there exists R > 0 such that

lim
k→∞

|Jk,R([x]) − 1| = 0

uniformly on S/G.

Proof. In the proof of Lemma 16, replace τ(ξ, x) by τ(ξ, x) exp{−
∫
γξ

LJ Xξ εω

2εω
}; just notice that the exponent is 0

when ξ = 0. �

12.3. Proof of Theorem 12

Proof. (a) We write I
S(H)

k as the sum of an integral over BR(0) and an integral over the complement of BR(0).

The result follows from Lemma 16 and Theorem 13. The proof for J
S(H)

k is similar but using Lemma 17 and
Theorem 13.

(b) We assume that I I
Z(H)

k 6= 0 and Ĩ I
Z(H)

k 6= 0.

Now we prove limk→∞ I I
Z(H)

k = 0. Since we have a finite summation in the expression of I I
Z(H)

k , we only need
to prove that each summand goes to 0 when k → ∞. We will simply write GC · Si as GC · S. By Theorem 13 and
Lemma 16, there exists K0 > 0, such that when k > K0,∫

m ′

τ(ζ, u) exp

{
−2k

∫
γζ

φζ

}
dvol(m′) ≤ be−RDk

+ 2(k/2π)−m′/22−m′/2

≤ be−RDk
+ (k/2π)−m′/2b′.

Now, let us consider the term
∫

S |s|2(u)dvol(S). By Lemma 10, we can take a′
∈ F and take S′

⊂ φ−1(G · a′)

such that S can be reached from S′ by following the flow lines of the vector fields J X ζ , where ζ ∈ (m′). We use
Theorem 8(a) to express |s|2(u) in terms of |s|2(u′) and we use the arguments in the proof of Lemma 13 to find a
constant C ′ > 0 such that |s|2(u) ≤ |s|2(u′)e−kC ′

for all u′
∈ S′. Now, since M is compact, |s|2(u′) is bounded. The

volume of S is also bounded. So
∫

S |s|2(u)dvol(S) ≤ C ′′e−kC ′

for some constant C ′′.

So, for each summand in I I
Z(H)

k , there exist K0 > 0 and constants C, C ′, b, b′, R, D with C ′, R and D positive
such that when k > K0, the summand

≤ (k/2π)
n(H)

(h′)
/2

Ce−kC ′

(be−RDk
+ (k/2π)−m′/2b′).

Therefore limk→∞ I I
Z(H)

k = 0.

The proof for the statement about Ĩ I
Z(H)

k is similar. �

13. Asymptotic unitarity

Now, it comes to the definition of the inner products onH(M, L⊗k)G and onH(M, L⊗k
⊗

√
K )G . Recall that Mss

is open and dense in M , and

Mss
=

⋃
(H)

F−1
∞ (Z(H)).
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There is an open and dense set F−1
∞ (Z(H)) for some H in Mss , and, correspondingly, there is an open and dense

stratum S(H) in M//G. Let us denote the open dense piece F−1
∞ (Z(H)) as F−1

∞ (Z O), and denote the corresponding
open and dense stratum S(H) of M//G as SO .

Definition 4. Let s1, s2 ∈ H(M, L⊗k)G and let r1, r2 ∈ H(M, L⊗k
⊗

√
K )G . We define

〈s1, s2〉(1) =

∫ (1)

M
(s1, s2)dvol(M) =

∫
F−1

∞ (Z O )

(s1, s2)dvol(F−1
∞ (Z O)),

and we define

〈r1, r2〉(1) =

∫ (1)

M
(r1, r2)dvol(M) =

∫
F−1

∞ (Z O )

(r1, r2)dvol(F−1
∞ (Z O)).

By Theorems 11 and 12, we have

Corollary 2. Let s ∈ H(M, L⊗k)G , and let r ∈ H(M, L⊗k
⊗

√
K )G . Then,

‖s‖2
(1) =

∫ (1)

M
|s|2dvol(M) = (k/2π)dSO /2

∫
SO

|A′

ks|2([x])IS
O

k ([x])εω̂SO + I I Z O

k ,

where, IS
O

k ([x]) = 1 or limk→∞ IS
O

k ([x]) = 2−dG/H /2vol(G · x) uniformly for [x] ∈ SO for some H 6= G, and,

I I Z O

k = 0 or limk→∞ I I Z O

k = 0;

‖r‖
2
(1) =

∫ (1)

M
|r |

2dvol(M) = (k/2π)dSO /2
∫
SO

|B ′

kr |
2([x])JS

O

k ([x])εω̂SO + Ĩ I
Z O

k ,

where, JS
O

k ([x]) = 1 or limk→∞ JS
O

k ([x]) = 1 uniformly for [x] ∈ SO , and, Ĩ I
Z O

k = 0 or limk→∞ Ĩ I
Z O

k = 0.

The following definition modifies the usual definition of quantum norms, but it takes into account all the strata.
Physical interpretations of this definition would be desirable.

Definition 5. Let s1, s2 ∈ H(M, L⊗k)G and let r1, r2 ∈ H(M, L⊗k
⊗

√
K )G . We define

〈s1, s2〉(2) =

∫ (2)

M
(s1, s2)dvol(M) =

∑
Z(H)

∫
F−1

∞ (Z(H))

(s1, s2)dvol(F−1
∞ (Z(H))),

and we define

〈r1, r2〉(2) =

∫ (2)

M
(r1, r2)dvol(M) =

∑
Z(H)

∫
F−1

∞ (Z(H))

(r1, r2)dvol(F−1
∞ (Z(H))).

Again, by Theorems 11 and 12, we have

Corollary 3. Let s ∈ H(M, L⊗k)G , and let r ∈ H(M, L⊗k
⊗

√
K )G . Then,

‖s‖2
(2) =

∫ (2)

M
|s|2dvol(M)

=

∑
S(H)

(k/2π)
dS(H)

/2
∫
S(H)

|A′

ks|2([x])I
S(H)

k ([x])εω̂S(H)
+

∑
Z(H)

I I
Z(H)

k ,

where, I
S(G)

k = 1 or limk→∞ I
S(H)

k ([x]) = 2−dG/H /2vol(G ·x) uniformly for [x] ∈ S(H) with H 6= G, and, I I
Z(H)

k = 0

or limk→∞ I I
Z(H)

k = 0;

‖r‖
2
(2) =

∫ (2)

M
|r |

2dvol(M)

=

∑
S(H)

(k/2π)
dS(H)

/2
∫
S(H)

|B ′

kr |
2([x])J

S(H)

k ([x])εω̂S(H)
+

∑
Z(H)

Ĩ I
Z(H)

k ,
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where, J
S(G)

k = 1 or limk→∞ J
S(H)

k ([x]) = 1 uniformly for [x] ∈ S(H), and, Ĩ I
Z(H)

k = 0 or limk→∞ Ĩ I
Z(H)

k = 0.

For both Definitions 4 and 5, we have the following asymptotic unitarity for the maps B ′

k .

Theorem 14. The maps B ′

k are asymptotically unitary, in the sense that

lim
k→∞

‖B ′
∗

k B ′

k − I‖ = lim
k→∞

‖B ′

k B ′
∗

k − I‖ = 0,

where ‖.‖ refers to the operator norm.

Proof. We use Theorem 9, the definitions in (3) and in (4) of Section 5, and we use the above results in Corollaries 2
and 3 of Theorems 11 and 12. For the case of the quantum norms in Definition 5, we also use the fact that there are
finitely many strata. One may refer to [9], for the proof of Theorem 5.2 for the asymptotic unitarity of the maps Bk .

�
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